7年級數(shù)學(xué)下學(xué)期知識點(diǎn)
發(fā)布時間:2025-12-14 | 來源:互聯(lián)網(wǎng)轉(zhuǎn)載和整理
數(shù)學(xué)的課程項(xiàng)目在任何的階段中都有著非常重要的部分,所以在考試期間的分?jǐn)?shù)就是考量學(xué)生在學(xué)習(xí)數(shù)學(xué)期間的水平,現(xiàn)在有很多即將步入到七年級下半個學(xué)期的學(xué)生,所以想了解一下7年級數(shù)學(xué)下學(xué)期知識點(diǎn)。下面優(yōu)學(xué)小編和大家分享一下。
7年級數(shù)學(xué)下學(xué)期知識點(diǎn)
不等式的性質(zhì)
對稱性。
傳遞性。
加法單調(diào)性即同向不等式可加性。
乘法單調(diào)性。
同向正值不等式可乘性。
正值不等式可乘方。
正值不等式可開方。
一元一次不等式。
用不等號連接的,含有一個未知數(shù),并且未知數(shù)的次數(shù)都是1,未知數(shù)的系數(shù)不為0,左右兩邊為整式的式子叫做一元一次不等式。
一元一次不等式組。
一元一次不等式組是由幾個含有同一個未知數(shù)的一元一次不等式組成的不等式組。
不等式與不等式組。
不等式。
用不等號(<,>,≥,≤,≠)連接的式子叫做不等式。
等式兩邊同時乘或除以同一個不為0的整式,等式仍然成立。
若a=b。
那么有a·c=b·c或a÷c=b÷c (c≠0)。
等式具有傳遞性。
若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an。
解方程式的步驟。
解一元一次方程的步驟:去分母、去括號、移項(xiàng)、合并同類項(xiàng)、未知數(shù)系數(shù)化為1。
去分母:把系數(shù)化成整數(shù)。
去括號。
移項(xiàng):把等式一邊的某項(xiàng)變號后移到另一邊。
合并同類項(xiàng)。
系數(shù)化為1。
以任何一個不為0的數(shù),都得0。
有理數(shù)的乘方
求n個相同因數(shù)乘積的運(yùn)算,叫做乘方,乘方的結(jié)果叫做冪。其中a叫做底數(shù),n叫做指數(shù)。當(dāng)a?看作a的n次乘方的結(jié)果時,也可讀作“a的n次冪”或“a的n次方”。
一元一次方程
方程:先設(shè)字母表示未知數(shù),然后根據(jù)相等關(guān)系,寫出含有未知數(shù)的等式叫做方程。
一元一次方程指只含有一個未知數(shù)、未知數(shù)的最高次數(shù)為1且兩邊都為整式的等式,叫做一元一次方程。求出方程中未知數(shù)的值叫做方程式的解。
等式的性質(zhì)。
等式兩邊同時加上(或減去)同一個整式,等式仍然成立。
若a=b。
那么a+c=b+c。
有理數(shù)的加減法。
同號相加到相同符號,并把絕對值相加。異號相加取絕對值大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。
有理數(shù)的乘法。
兩數(shù)相乘同號得正,異號得負(fù),并把絕對值相乘。
任何數(shù)與0相乘,積為0. 例:0×1=0。
有理數(shù)的除法
除以一個不為0的數(shù),等于乘這個數(shù)的倒數(shù)。
兩數(shù)相除同號得正,異號得負(fù),并把絕對值相除。0除
以任何一個不為0的數(shù),都得0。
七年級下冊數(shù)學(xué)的知識點(diǎn)
此書名為“知識不是力量”,目的不是要宣揚(yáng)知識無用論,而是希望借此名重新思考學(xué)習(xí)的本質(zhì)。下面我給大家分享一些七年級下冊數(shù)學(xué)的知識,希望能夠幫助大家,歡迎閱讀!
七年級下冊數(shù)學(xué)的知識1
相交線與平行線
一、相交線 兩條直線相交,形成4個角。
1、兩條直線相交所成的四個角中,相鄰的兩個角叫做鄰補(bǔ)角,特點(diǎn)是兩個角共用一條邊,另一條邊互為反向延長線,性質(zhì)是鄰補(bǔ)角互補(bǔ)相對的兩個角叫做對頂角,特點(diǎn)是它們的兩條邊互為反向延長線。性質(zhì)是對頂角相等。
①鄰補(bǔ)角:兩個角有一條公共邊,它們的另一條邊互為反向延長線。具有這種關(guān)系的兩個角,互為鄰補(bǔ)角。如:∠1、∠2。
②對頂角:兩個角有一個公共頂點(diǎn),并且一個角的兩條邊,分別是另一個角的兩條邊的反向延長線,具有這種關(guān)系的兩個角,互為對頂角。如:∠1、∠3。
③對頂角相等。
二、垂線
1.垂直:如果兩條直線相交成直角,那么這兩條直線互相垂直。
2.垂線: 垂直是相交的一種特殊情形,兩條直線垂直,其中一條直線叫做另一條直線的垂線。
3.垂足:兩條垂線的交點(diǎn)叫垂足。
4.垂線特點(diǎn):過一點(diǎn)有且只有一條直線與已知直線垂直。
5.點(diǎn)到直線的距離: 直線外一點(diǎn)到這條直線的垂線段的長度,叫點(diǎn)到直線的距離。連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。
三、同位角、內(nèi)錯角、同旁內(nèi)角
兩條直線被第三條直線所截形成8個角。
1.同位角:(在兩條直線的同一旁,第三條直線的同一側(cè))在兩條直線的上方,又在直線EF的同側(cè),具有這種位置關(guān)系的兩個角叫同位角。如:∠1和∠5。
2.內(nèi)錯角:(在兩條直線內(nèi)部,位于第三條直線兩側(cè))在兩條直線之間,又在直線EF的兩側(cè),具有這種位置關(guān)系的兩個角叫內(nèi)錯角。如:∠3和∠5。
3.同旁內(nèi)角:(在兩條直線內(nèi)部,位于第三條直線同側(cè))在兩條直線之間,又在直線EF的同側(cè),具有這種位置關(guān)系的兩個角叫同旁內(nèi)角。如:∠3和∠6。
四、平行線及其判定
平行線
1.平行:兩條直線不相交。互相平行的兩條直線,互為平行線。a∥b(在同一平面內(nèi),不相交的兩條直線叫做平行線。)
2.平行公理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。
3.平行公理推論:平行于同一直線的兩條直線互相平行。如果b//a,c//a,那么b//c
平行線的判定:
1. 兩條平行線被第三條直線所截,如果同位角相等,那么這兩條直線平行。(同位角相等,兩直線平行)
2. 兩條平行線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行。(內(nèi)錯角相等,兩直線平行)
3. 兩條平行線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么這兩條直線平行。(同旁內(nèi)角互補(bǔ),兩直線平行)
推論:在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行。
平行線的性質(zhì)
(一)平行線的性質(zhì)
1.兩條平行線被第三條直線所截,同位角相等。(兩直線平行,同位角相等)
2.兩條平行線被第三條直線所截,內(nèi)錯角相等。(兩直線平行,內(nèi)錯角相等)
3.兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。(兩直線平行,同旁內(nèi)角相等)
(二)命題、定理、證明
1.命題的概念:判斷一件事情的語句,叫做命題。
2.命題的組成:每個命題都是題設(shè)、結(jié)論兩部分組成。
題設(shè)是已知事項(xiàng)結(jié)論是由已知事項(xiàng)推出的事項(xiàng)。命題常寫成“如果 ,那么 ”的形式。具有這種形式的命題中,用“如果”開始的部分是題設(shè),用“那么”開始的部分是結(jié)論。
3.真命題:正確的命題,題設(shè)成立,結(jié)論一定成立。
4.假命題:錯誤的命題,題設(shè)成立,不能保證結(jié)論一定成立。
5.定理:經(jīng)過推理證實(shí)得到的真命題。(定理可以做為繼續(xù)推理的依據(jù))
6.證明:推理的過程叫做證明。
平移
1.平移:平移是指在平面內(nèi),將一個圖形沿著某個方向移動一定的距離,這樣的圖形運(yùn)動叫做平移變換 (簡稱平移),平移不改變物體的形狀和大小。
2.平移的性質(zhì)
①把一個圖形整體沿某一直線方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
②新圖形中的每一點(diǎn),都是由原圖形中的某一點(diǎn)移動后得到的,這兩個點(diǎn)是對應(yīng)點(diǎn)。連接各組對應(yīng)點(diǎn)的線段平行且相等。
七年級下冊數(shù)學(xué)的知識2
實(shí)數(shù)
一、平方根
1、平方根
(1)平方根的定義:如果一個數(shù)x的平方等于a,那么這個數(shù)x就叫做a的平方根.即:如果x2=a,那么x叫做a的平方根.
(2)開平方的定義:求一個數(shù)的平方根的運(yùn)算,叫做開平方.開平方運(yùn)算的被開方數(shù)必須是非負(fù)數(shù)才有意義。
(3)平方與開平方互為逆運(yùn)算:±3的平方等于9,9的平方根是±3
(4)一個正數(shù)有兩個平方根,即正數(shù)進(jìn)行開平方運(yùn)算有兩個結(jié)果一個負(fù)數(shù)沒有平方根,即負(fù)數(shù)不能進(jìn)行開平方運(yùn)算0的平方根是0.
(7)平方根和算術(shù)平方根兩者既有區(qū)別又有聯(lián)系:
區(qū)別在于正數(shù)的平方根有兩個,而它的算術(shù)平方根只有一個
聯(lián)系在于正數(shù)的正平方根就是它的算術(shù)平方根,而正數(shù)的負(fù)平方根是它的算術(shù)平方根的相反數(shù)。
三、實(shí)數(shù)
一、實(shí)數(shù)的概念及分類
無理數(shù):像前面的很多數(shù)的平方根和立方根都是無限不循環(huán)小數(shù),無限不循環(huán)小數(shù)又叫無理數(shù)。
實(shí)數(shù):有理數(shù)和無理數(shù)統(tǒng)稱實(shí)數(shù)。
1、實(shí)數(shù)的分類
二、實(shí)數(shù)的倒數(shù)、相反數(shù)和絕對值
1、相反數(shù)
實(shí)數(shù)與它的相反數(shù)是一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應(yīng)的點(diǎn)關(guān)于原點(diǎn)對稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。
數(shù)a的相反數(shù)是—a,這里a表示任意一個實(shí)數(shù)。
2、絕對值
一個數(shù)的絕對值就是表示這個數(shù)的點(diǎn)與原點(diǎn)的距離,|a|≥0。零的絕對值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0若|a|=-a,則a≤0。
一個正實(shí)數(shù)的絕對值是它本身,一個負(fù)實(shí)數(shù)的絕對值是它的相反數(shù),零的絕對值是0。
正數(shù)大于零負(fù)數(shù)小于零,正數(shù)大于一切負(fù)數(shù),兩個負(fù)數(shù),絕對值大的反而小。
3、倒數(shù)
如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。
4. 實(shí)數(shù)與數(shù)軸上點(diǎn)的關(guān)系:
每一個無理數(shù)都可以用數(shù)軸上的一個點(diǎn)表示出來,
數(shù)軸上的點(diǎn)有些表示有理數(shù),有些表示無理數(shù),
實(shí)數(shù)與數(shù)軸上的點(diǎn)就是一一對應(yīng)的,即每一個實(shí)數(shù)都可以用數(shù)軸上的一個點(diǎn)來表示反過來,數(shù)軸上的每一個點(diǎn)都是表示一個實(shí)數(shù)。
三、科學(xué)記數(shù)法和近似數(shù)
1、有效數(shù)字
一個近似數(shù)四舍五入到哪一位,就說它精確到哪一位,這時,從左邊第一個不是零的數(shù)字起到右邊精確的數(shù)位止的所有數(shù)字,都叫做這個數(shù)的有效數(shù)字。
2、科學(xué)記數(shù)法
把一個數(shù)寫做±a×10n的形式,其中1≤a<10,n是整數(shù),這種記數(shù)法叫做科學(xué)記數(shù)法。
四、實(shí)數(shù)大小的比較
1、數(shù)軸
規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意三要素缺一不可)。
解題時要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對應(yīng)的,并能靈活運(yùn)用。
2、實(shí)數(shù)大小比較的幾種常用 方法
(1)數(shù)軸比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。
(2)求差比較:設(shè)a、b是實(shí)數(shù),
七年級下冊數(shù)學(xué)的知識3
平面直角坐標(biāo)系
一、平面直角坐標(biāo)系
有序數(shù)對
1.有序數(shù)對:用兩個數(shù)來表示一個確定的位置,其中兩個數(shù)各自表示不同的意義,我們把這種有順序的兩個數(shù)組成的數(shù)對,叫做有序數(shù)對,記作(a,b)
2.坐標(biāo):數(shù)軸(或平面)上的點(diǎn)可以用一個數(shù)(或數(shù)對)來表示,這個數(shù)(或數(shù)對)叫做這個點(diǎn)的坐標(biāo)。
平面直角坐標(biāo)系
1.平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)的數(shù)軸。這樣我們就說在平面上建立了平面直角坐標(biāo)系,簡稱直角坐標(biāo)系。
2.X軸:水平的數(shù)軸叫X軸或橫軸。向右方向?yàn)檎较颉?/p>
3.Y軸:豎直的數(shù)軸叫Y軸或縱軸。向上方向?yàn)檎较颉?/p>
4.原點(diǎn):兩個數(shù)軸的交點(diǎn)叫做平面直角坐標(biāo)系的原點(diǎn)。
對應(yīng)關(guān)系:平面直角坐標(biāo)系內(nèi)的點(diǎn)與有序?qū)崝?shù)對一一對應(yīng)。
坐標(biāo):對于平面內(nèi)任一點(diǎn)P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應(yīng)的數(shù)a,b分別叫點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)。
象限
1.象限:X軸和Y軸把坐標(biāo)平面分成四個部分,也叫四個象限。右上面的叫做第一象限,其他三個部分按逆時針方向依次叫做第二象限、第三象限和第四象限。象限以數(shù)軸為界,橫軸、縱軸上的點(diǎn)及原點(diǎn)不屬于任何象限。一般在x軸和y軸取相同的單位長度。
2.象限的特點(diǎn):
1、特殊位置的點(diǎn)的坐標(biāo)的特點(diǎn):
(1)x軸上的點(diǎn)的縱坐標(biāo)為零y軸上的點(diǎn)的橫坐標(biāo)為零。
(2)第一、三象限角平分線上的點(diǎn)橫、縱坐標(biāo)相等
第二、四象限角平分線上的點(diǎn)橫、縱坐標(biāo)互為相反數(shù)。
(3)在任意的兩點(diǎn)中,如果兩點(diǎn)的橫坐標(biāo)相同,則兩點(diǎn)的連線平行于縱軸如果兩點(diǎn)的縱坐標(biāo)相同,則兩點(diǎn)的連線平行于橫軸。
2、點(diǎn)到軸及原點(diǎn)的距離:
點(diǎn)到x軸的距離為|y|
點(diǎn)到y(tǒng)軸的距離為|x|
點(diǎn)到原點(diǎn)的距離為x的平方加y的平方再開根號
3、三大規(guī)律
(1)平移規(guī)律:
點(diǎn)的平移規(guī)律
左右平移→縱坐標(biāo)不變,橫坐標(biāo)左減右加
上下平移→橫坐標(biāo)不變,縱坐標(biāo)上加下減。
圖形的平移規(guī)律 找特殊點(diǎn)
(2)對稱規(guī)律
關(guān)于x軸對稱→橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù)
關(guān)于y軸對稱→橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變
關(guān)于原點(diǎn)對稱→橫縱坐標(biāo)都互為相反數(shù)。
(3)位置規(guī)律
二、坐標(biāo)方法的簡單應(yīng)用
用坐標(biāo)表示地理位置的過程:
1.建立坐標(biāo)系,選擇一個合適的參照點(diǎn)為原點(diǎn),確定X軸和Y軸的正方向。
2.根據(jù)具體問題確定適當(dāng)?shù)谋壤?,在坐?biāo)軸上標(biāo)出單位長度。
3.在坐標(biāo)平面內(nèi)畫出這些點(diǎn),寫出各點(diǎn)的坐標(biāo)和各個地點(diǎn)的名稱。
用坐標(biāo)表示平移
在平面直角坐標(biāo)系內(nèi),如果把一個圖形各個點(diǎn)的橫坐標(biāo)都加(或減去)一個正數(shù)a,相應(yīng)的新圖形就把原圖形向右(左)平移a個單位長度如果把它各個點(diǎn)的縱坐標(biāo)都加(或減去) 一個正數(shù)a,相應(yīng)的新圖形就把原圖形向上(下)平移a個單位長度。
用坐標(biāo)表示地理位置的過程:
1.建立坐標(biāo)系,選擇一個合適的參照點(diǎn)為原點(diǎn),確定X軸和Y軸的正方向。
2.根據(jù)具體問題確定適當(dāng)?shù)谋壤?,在坐?biāo)軸上標(biāo)出單位長度。
3.在坐標(biāo)平面內(nèi)畫出這些點(diǎn),寫出各點(diǎn)的坐標(biāo)和各個地點(diǎn)的名稱。
用坐標(biāo)表示平移
在平面直角坐標(biāo)系內(nèi),如果把一個圖形各個點(diǎn)的橫坐標(biāo)都加(或減去)一個正數(shù)a,相應(yīng)的新圖形就把原圖形向右(左)平移a個單位長度如果把它各個點(diǎn)的縱坐標(biāo)都加(或減去) 一個正數(shù)a,相應(yīng)的新圖形就把原圖形向上(下)平移a個單位長度。
七年級下冊數(shù)學(xué)的知識點(diǎn)相關(guān) 文章 :
★ 初一數(shù)學(xué)下冊知識點(diǎn)
★ 七年級數(shù)學(xué)下冊知識點(diǎn)總結(jié)
★ 七年級數(shù)學(xué)下冊知識點(diǎn)歸納
★ 人教版初一數(shù)學(xué)下冊知識點(diǎn)復(fù)習(xí)總結(jié)備戰(zhàn)中考
★ 初一下期數(shù)學(xué)知識點(diǎn)總結(jié)
★ 2017年七年級下冊數(shù)學(xué)知識點(diǎn)
★ 初一下冊數(shù)學(xué)重要知識點(diǎn)
★ 人教版七年級下冊數(shù)學(xué)復(fù)習(xí)提綱
★ 初一數(shù)學(xué)下冊基本知識點(diǎn)總結(jié)
七年級數(shù)學(xué)下冊知識點(diǎn)總結(jié)
數(shù)學(xué)要考的知識點(diǎn)有哪些呢?接下來是我為大家?guī)淼年P(guān)于 七年級數(shù)學(xué) 下冊知識點(diǎn) 總結(jié) ,希望會給大家?guī)韼椭?/p>
七年級數(shù)學(xué)下冊知識點(diǎn)總結(jié)(一)
一、單項(xiàng)式
1、都是數(shù)字與字母的乘積的代數(shù)式叫做單項(xiàng)式。
2、單項(xiàng)式的數(shù)字因數(shù)叫做單項(xiàng)式的系數(shù)。
3、單項(xiàng)式中所有字母的指數(shù)和叫做單項(xiàng)式的次數(shù)。
4、單獨(dú)一個數(shù)或一個字母也是單項(xiàng)式。
5、只含有字母因式的單項(xiàng)式的系數(shù)是1或―1。
6、單獨(dú)的一個數(shù)字是單項(xiàng)式,它的系數(shù)是它本身。
7、單獨(dú)的一個非零常數(shù)的次數(shù)是0。
8、單項(xiàng)式中只能含有乘法或乘方運(yùn)算,而不能含有加、減等其他運(yùn)算。
9、單項(xiàng)式的系數(shù)包括它前面的符號。
10、單項(xiàng)式的系數(shù)是帶分?jǐn)?shù)時,應(yīng)化成假分?jǐn)?shù)。
11、單項(xiàng)式的系數(shù)是1或―1時,通常省略數(shù)字“1”。
12、單項(xiàng)式的次數(shù)僅與字母有關(guān),與單項(xiàng)式的系數(shù)無關(guān)。
二、多項(xiàng)式
1、幾個單項(xiàng)式的和叫做多項(xiàng)式。
2、多項(xiàng)式中的每一個單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。
3、多項(xiàng)式中不含字母的項(xiàng)叫做常數(shù)項(xiàng)。
4、一個多項(xiàng)式有幾項(xiàng),就叫做幾項(xiàng)式。
5、多項(xiàng)式的每一項(xiàng)都包括項(xiàng)前面的符號。
6、多項(xiàng)式?jīng)]有系數(shù)的概念,但有次數(shù)的概念。
7、多項(xiàng)式中次數(shù)最高的項(xiàng)的次數(shù),叫做這個多項(xiàng)式的次數(shù)。
三、整式
1、單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。
2、單項(xiàng)式或多項(xiàng)式都是整式。
3、整式不一定是單項(xiàng)式。
4、整式不一定是多項(xiàng)式。
5、分母中含有字母的代數(shù)式不是整式而是今后將要學(xué)習(xí)的分式。
四、整式的加減
1、整式加減的理論根據(jù)是:去括號法則,合并同類項(xiàng)法則,以及乘法分配率。
2、幾個整式相加減,關(guān)鍵是正確地運(yùn)用去括號法則,然后準(zhǔn)確合并同類項(xiàng)。
3、幾個整式相加減的一般步驟:
(1)列出代數(shù)式:用括號把每個整式括起來,再用加減號連接。
(2)按去括號法則去括號。
(3)合并同類項(xiàng)。
4、代數(shù)式求值的一般步驟:
(1)代數(shù)式化簡。
(2)代入計(jì)算
(3)對于某些特殊的代數(shù)式,可采用“整體代入”進(jìn)行計(jì)算。
五、同底數(shù)冪的乘法
1、n個相同因式(或因數(shù))a相乘,記作an,讀作a的n次方(冪),其中a為底數(shù),n為指數(shù),an的結(jié)果叫做冪。
2、底數(shù)相同的冪叫做同底數(shù)冪。
3、同底數(shù)冪乘法的運(yùn)算法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。即:am﹒an=am+n。
4、此法則也可以逆用,即:am+n = am﹒an。
5、開始底數(shù)不相同的冪的乘法,如果可以化成底數(shù)相同的冪的乘法,先化成同底數(shù)冪再運(yùn)用法則。
六、冪的乘方
1、冪的乘方是指幾個相同的冪相乘。(am)n表示n個am相乘。
2、冪的乘方運(yùn)算法則:冪的乘方,底數(shù)不變,指數(shù)相乘。(am)n =amn。
3、此法則也可以逆用,即:amn =(am)n=(an)m。
七、積的乘方
1、積的乘方是指底數(shù)是乘積形式的乘方。
2、積的乘方運(yùn)算法則:積的乘方,等于把積中的每個因式分別乘方,然后把所得的冪相乘。即(ab)n=anbn。
3、此法則也可以逆用,即:anbn=(ab)n。
八、三種“冪的運(yùn)算法則”異同點(diǎn)
1、共同點(diǎn):
(1)法則中的底數(shù)不變,只對指數(shù)做運(yùn)算。
(2)法則中的底數(shù)(不為零)和指數(shù)具有普遍性,即可以是數(shù),也可以是式(單項(xiàng)式或多項(xiàng)式)。
(3)對于含有3個或3個以上的運(yùn)算,法則仍然成立。
2、不同點(diǎn):
(1)同底數(shù)冪相乘是指數(shù)相加。
(2)冪的乘方是指數(shù)相乘。
(3)積的乘方是每個因式分別乘方,再將結(jié)果相乘。
九、同底數(shù)冪的除法
1、同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即:am÷an=am-n(a≠0)。
2、此法則也可以逆用,即:am-n = am÷an(a≠0)。
十、零指數(shù)冪
1、零指數(shù)冪的意義:任何不等于0的數(shù)的0次冪都等于1,即:a0=1(a≠0)。
十一、負(fù)指數(shù)冪
1、任何不等于零的數(shù)的―p次冪,等于這個數(shù)的p次冪的倒數(shù),即:
注:在同底數(shù)冪的除法、零指數(shù)冪、負(fù)指數(shù)冪中底數(shù)不為0。
十二、整式的乘法
(一)單項(xiàng)式與單項(xiàng)式相乘
1、單項(xiàng)式乘法法則:單項(xiàng)式與單項(xiàng)式相乘,把它們的系數(shù)、相同字母的冪分別相乘,其余字母連同它的指數(shù)不變,作為積的因式。
2、系數(shù)相乘時,注意符號。
3、相同字母的冪相乘時,底數(shù)不變,指數(shù)相加。
4、對于只在一個單項(xiàng)式中含有的字母,連同它的指數(shù)一起寫在積里,作為積的因式。
5、單項(xiàng)式乘以單項(xiàng)式的結(jié)果仍是單項(xiàng)式。
6、單項(xiàng)式的乘法法則對于三個或三個以上的單項(xiàng)式相乘同樣適用。
(二)單項(xiàng)式與多項(xiàng)式相乘
1、單項(xiàng)式與多項(xiàng)式乘法法則:單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配率用單項(xiàng)式去乘多項(xiàng)式中的每一項(xiàng),再把所得的積相加。即:m(a+b+c)=ma+mb+mc。
2、運(yùn)算時注意積的符號,多項(xiàng)式的每一項(xiàng)都包括它前面的符號。
3、積是一個多項(xiàng)式,其項(xiàng)數(shù)與多項(xiàng)式的項(xiàng)數(shù)相同。
4、混合運(yùn)算中,注意運(yùn)算順序,結(jié)果有同類項(xiàng)時要合并同類項(xiàng),從而得到最簡結(jié)果。
(三)多項(xiàng)式與多項(xiàng)式相乘
1、多項(xiàng)式與多項(xiàng)式乘法法則:多項(xiàng)式與多項(xiàng)式相乘,先用一個多項(xiàng)式的每一項(xiàng)乘另一個多項(xiàng)式的每一項(xiàng),再把所得的積相加。即:(m+n)(a+b)=ma+mb+na+nb。
2、多項(xiàng)式與多項(xiàng)式相乘,必須做到不重不漏。相乘時要按一定的順序進(jìn)行,即一個多項(xiàng)式的每一項(xiàng)乘以另一個多項(xiàng)式的每一項(xiàng)。在未合并同類項(xiàng)之前,積的項(xiàng)數(shù)等于兩個多項(xiàng)式項(xiàng)數(shù)的積。
3、多項(xiàng)式的每一項(xiàng)都包含它前面的符號,確定積中每一項(xiàng)的符號時應(yīng)用“同號得正,異號得負(fù)”。
4、運(yùn)算結(jié)果中有同類項(xiàng)的要合并同類項(xiàng)。
5、對于含有同一個字母的一次項(xiàng)系數(shù)是1的兩個一次二項(xiàng)式相乘時,可以運(yùn)用下面的公式簡化運(yùn)算:(x+a)(x+b)=x2+(a+b)x+ab。
十三、平方差公式
1、(a+b)(a-b)=a2-b2,即:兩數(shù)和與這兩數(shù)差的積,等于它們的平方之差。
2、平方差公式中的a、b可以是單項(xiàng)式,也可以是多項(xiàng)式。
3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。
4、平方差公式還能簡化兩數(shù)之積的運(yùn)算,解這類題,首先看兩個數(shù)能否轉(zhuǎn)化成
(a+b)?(a-b)的形式,然后看a2與b2是否容易計(jì)算。
十四、完全平方公式
七年級數(shù)學(xué)下冊知識點(diǎn)總結(jié)(二)
第二章 平行線與相交線
一、平行線與相交線
平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。
若兩條直線只有一個公共點(diǎn),我們稱這兩條直線為相交線。
二、余角與補(bǔ)角
1、如果兩個角的和是直角,那么稱這兩個角互為余角,簡稱為互余,稱其中一個角是另一個角的余角。
2、如果兩個角的和是平角,那么稱這兩個角互為補(bǔ)角,簡稱為互補(bǔ),稱其中一個角是另一個角的補(bǔ)角。
3、互余和互補(bǔ)是指兩角和為直角或兩角和為平角,它們只與角的度數(shù)有關(guān),與角的位置無關(guān)。
4、余角和補(bǔ)角的性質(zhì):同角或等角的余角相等,同角或等角的補(bǔ)角相等。
5、余角和補(bǔ)角的性質(zhì)用數(shù)學(xué)語言可表示為:
6、余角和補(bǔ)角的性質(zhì)是證明兩角相等的一個重要 方法 。
三、對頂角
1、兩條直線相交成四個角,其中不相鄰的兩個角是對頂角。
2、一個角的兩邊分別是另一個角的兩邊的反向延長線,這兩個角叫做對頂角。
3、對頂角的性質(zhì):對頂角相等。
4、對頂角的性質(zhì)在今后的推理說明中應(yīng)用非常廣泛,它是證明兩個角相等的依據(jù)及重要橋梁。
5、對頂角是從位置上定義的,對頂角一定相等,但相等的角不一定是對頂角。
四、垂線及其性質(zhì)
1、垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。
2、垂線的性質(zhì):
性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。
性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。
五、同位角、內(nèi)錯角、同旁內(nèi)角
1、兩條直線被第三條直線所截,形成了8個角。
2、同位角:兩個角都在兩條直線的同側(cè),并且在第三條直線(截線)的同旁,這樣的一對角叫做同位角。
3、內(nèi)錯角:兩個角都在兩條直線之間,并且在第三條直線(截線)的兩旁,這樣的一對角叫做內(nèi)錯角。
4、同旁內(nèi)角:兩個角都在兩條直線之間,并且在第三條直線(截線)的同旁,這樣的一對角叫同旁內(nèi)角。
5、這三種角只與位置有關(guān),與大小無關(guān),通常情況下,它們之間不存在固定的大小關(guān)系。
六、六類角
1、補(bǔ)角、余角、對頂角、同位角、內(nèi)錯角、同旁內(nèi)角六類角都是對兩角來說的。
2、余角、補(bǔ)角只有數(shù)量上的關(guān)系,與其位置無關(guān)。
3、同位角、內(nèi)錯角、同旁內(nèi)角只有位置上的關(guān)系,與其數(shù)量無關(guān)。
4、對頂角既有數(shù)量關(guān)系,又有位置關(guān)系。
七、平行線的判定方法
1、同位角相等,兩直線平行。
2、內(nèi)錯角相等,兩直線平行。
3、同旁內(nèi)角互補(bǔ),兩直線平行。
4、在同一平面內(nèi),如果兩條直線都平行于第三條直線,那么這兩條直線平行。
5、在同一平面內(nèi),如果兩條直線都垂直于第三條直線,那么這兩條直線平行。
八、平行線的性質(zhì)
1、兩直線平行,同位角相等。
2、兩直線平行,內(nèi)錯角相等。
3、兩直線平行,同旁內(nèi)角互補(bǔ)。
4、平行線的判定與性質(zhì)具備互逆的特征,其關(guān)系如下:
在應(yīng)用時要正確區(qū)分積極向上的題設(shè)和結(jié)論。
九、尺規(guī)作線段和角
1、在幾何里,只用沒有刻度的直尺和圓規(guī)作圖稱為尺規(guī)作圖。
2、尺規(guī)作圖是最基本、最常見的作圖方法,通常叫基本作圖。
3、尺規(guī)作圖中直尺的功能是:
(1)在兩點(diǎn)間連接一條線段
(2)將線段向兩方延長。
(2)將線段向兩方延長。
4、尺規(guī)作圖中圓規(guī)的功能是:
(1)以任意一點(diǎn)為圓心,任意長為半徑作一個圓
(2)以任意一點(diǎn)為圓心,任意長為半徑畫一段弧
5、熟練掌握以下作圖語言:
(1)作射線××
(2)在射線上截取××=××
(3)在射線××上依次截取××=××=××
(4)以點(diǎn)×為圓心,××為半徑畫弧,交××于點(diǎn)×
(5)分別以點(diǎn)×、點(diǎn)×為圓心,以××、××為半徑作弧,兩弧相交于點(diǎn)×
(6)過點(diǎn)×和點(diǎn)×畫直線××(或畫射線××)
(7)在∠×××的外部(或內(nèi)部)畫∠×××=∠×××
6、在作較復(fù)雜圖形時,涉及基本作圖的地方,不必重復(fù)作圖的詳細(xì)過程,只用一句話概括敘述就可以了。
(1)畫線段××=××
(2)畫∠×××=∠×××
七年級數(shù)學(xué)下冊知識點(diǎn)總結(jié)(三)
第三章 變量之間的關(guān)系
一、變量、自變量、因變量
1、在某一變化過程中,不斷變化的量叫做變量。
2、如果一個變量y隨另一個變量x的變化而變化,則把x叫做自變量,y叫做因變量。
3、自變量與因變量的確定:
(1)自變量是先發(fā)生變化的量因變量是后發(fā)生變化的量。
(2)自變量是主動發(fā)生變化的量,因變量是隨著自變量的變化而發(fā)生變化的量。
(3)利用具體情境來體會兩者的依存關(guān)系。
二、表格
1、表格是表達(dá)、反映數(shù)據(jù)的一種重要形式,從中獲取信息、研究不同量之間的關(guān)系。
(1)首先要明確表格中所列的是哪兩個量
(2)分清哪一個量為自變量,哪一個量為因變量
(3)結(jié)合實(shí)際情境理解它們之間的關(guān)系。
2、繪制表格表示兩個變量之間關(guān)系
(1)列表時首先要確定各行、各列的欄目
(2)一般有兩行,第一行表示自變量,第二行表示因變量
(3)寫出欄目名稱,有時還根據(jù)問題內(nèi)容寫上單位
(4)在第一行列出自變量的各個變化取值第二行對應(yīng)列出因變量的各個變化取值。
(5)一般情況下,自變量的取值從左到右應(yīng)按由小到大的順序排列,這樣便于反映因變量與自變量之間的關(guān)系。
三、關(guān)系式
1、用關(guān)系式表示因變量與自變量之間的關(guān)系時,通常是用含有自變量(用字母表示)的代數(shù)式表示因變量(也用字母表示),這樣的數(shù)學(xué)式子(等式)叫做關(guān)系式。
2、關(guān)系式的寫法不同于方程,必須將因變量單獨(dú)寫在等號的左邊。
3、求兩個變量之間關(guān)系式的途徑:
(1)將自變量和因變量看作兩個未知數(shù),根據(jù)題意列出關(guān)于未知數(shù)的方程,并最終寫成關(guān)系式的形式。
(2)根據(jù)表格中所列的數(shù)據(jù)寫出變量之間的關(guān)系式
(3)根據(jù)實(shí)際問題中的基本數(shù)量關(guān)系寫出變量之間的關(guān)系式
(4)根據(jù)圖象寫出與之對應(yīng)的變量之間的關(guān)系式。
4、關(guān)系式的應(yīng)用:
(1)利用關(guān)系式能根據(jù)任何一個自變量的值求出相應(yīng)的因變量的值
(2)同樣也可以根據(jù)任何一個因變量的值求出相應(yīng)的自變量的值
(3)根據(jù)關(guān)系式求值的實(shí)質(zhì)就是解一元一次方程(求自變量的值)或求代數(shù)式的值(求因變量的值)。
四、圖象
1、圖象是刻畫變量之間關(guān)系的又一重要方法,其特點(diǎn)是非常直觀、形象。
2、圖象能清楚地反映出因變量隨自變量變化而變化的情況。
3、用圖象表示變量之間的關(guān)系時,通常用水平方向的數(shù)軸(又稱橫軸)上的點(diǎn)表示自變量,用豎直方向的數(shù)軸(又稱縱軸)上的點(diǎn)表示因變量。
4、圖象上的點(diǎn):
(1)對于某個具體圖象上的點(diǎn),過該點(diǎn)作橫軸的垂線,垂足的數(shù)據(jù)即為該點(diǎn)自變量的取值
(2)過該點(diǎn)作縱軸的垂線,垂足的數(shù)據(jù)即為該點(diǎn)相應(yīng)因變量的值。
(3)由自變量的值求對應(yīng)的因變量的值時,可在橫軸上找到表示自變量的值的點(diǎn),過這個點(diǎn)作橫軸的垂線與圖象交于某點(diǎn),再過交點(diǎn)作縱軸的垂線,縱軸上垂足所表示的數(shù)據(jù)即為因變量的相應(yīng)值。
(4)把以上作垂線的過程過來可由因變量的值求得相應(yīng)的自變量的值。
5、圖象理解
(1)理解圖象上某一個點(diǎn)的意義,一要看橫軸、縱軸分別表示哪個變量
(2)看該點(diǎn)所對應(yīng)的橫軸、縱軸的位置(數(shù)據(jù))
(3)從圖象上還可以得到隨著自變量的變化,因變量的變化趨勢。
五、速度圖象
1、弄清哪一條軸(通常是縱軸)表示速度,哪一條軸(通常是橫軸)表示時間
2、準(zhǔn)確讀懂不同走向的線所表示的意義:
(1)上升的線:從左向右呈上升狀的線,其代表速度增加
(2)水平的線:與水平軸(橫軸)平行的線,其代表勻速行駛或靜止
(3)下降的線:從左向右呈下降狀的線,其代表速度減小。
六、路程圖象
1、弄清哪一條軸(通常是縱軸)表示路程,哪一條軸(通常是橫軸)表示時間
2、準(zhǔn)確讀懂不同走向的線所表示的意義:
(1)上升的線:從左向右呈上升狀的線,其代表勻速遠(yuǎn)離起點(diǎn)(或已知定點(diǎn))
(2)水平的線:與水平軸(橫軸)平行的線,其代表靜止
(3)下降的線:從左向右呈下降狀的線,其代表反向運(yùn)動返回起點(diǎn)(或已知定點(diǎn))。
七年級數(shù)學(xué)下冊知識點(diǎn)總結(jié)(四)
第四章 三角形
一、三角形概念
1、不在同一條直線上的三條線段首尾順次相接所組成的圖形,稱為三角形,可以用符號“Δ”表示。
2、頂點(diǎn)是A、B、C的三角形,記作“ΔABC”,讀作“三角形ABC”。
3、組成三角形的三條線段叫做三角形的邊,即邊AB、BC、AC,有時也用a,b,c來表示,頂點(diǎn)A所對的邊BC用a表示,邊AC、AB分別用b,c來表示
4、∠A、∠B、∠C為ΔABC的三個內(nèi)角。
二、三角形中三邊的關(guān)系
數(shù)學(xué)七年級下冊知識點(diǎn)
知識的寬度、厚度和精度決定人的成熟度。每一個人比別人成功,只不過是多學(xué)了一點(diǎn)知識,多用了一點(diǎn)心而已。接下來我給大家分享關(guān)于數(shù)學(xué)七年級下冊知識,希望對大家有所幫助!
數(shù)學(xué)七年級下冊知識1
相交線與平行線
一、相交線 兩條直線相交,形成4個角。
1、兩條直線相交所成的四個角中,相鄰的兩個角叫做鄰補(bǔ)角,特點(diǎn)是兩個角共用一條邊,另一條邊互為反向延長線,性質(zhì)是鄰補(bǔ)角互補(bǔ);相對的兩個角叫做對頂角,特點(diǎn)是它們的兩條邊互為反向延長線。性質(zhì)是對頂角相等。
①鄰補(bǔ)角:兩個角有一條公共邊,它們的另一條邊互為反向延長線。具有這種關(guān)系的兩個角,互為鄰補(bǔ)角。如:∠1、∠2。
②對頂角:兩個角有一個公共頂點(diǎn),并且一個角的兩條邊,分別是另一個角的兩條邊的反向延長線,具有這種關(guān)系的兩個角,互為對頂角。如:∠1、∠3。
③對頂角相等。
二、垂線
1.垂直:如果兩條直線相交成直角,那么這兩條直線互相垂直。
2.垂線: 垂直是相交的一種特殊情形,兩條直線垂直,其中一條直線叫做另一條直線的垂線。
3.垂足:兩條垂線的交點(diǎn)叫垂足。
4.垂線特點(diǎn):過一點(diǎn)有且只有一條直線與已知直線垂直。
5.點(diǎn)到直線的距離: 直線外一點(diǎn)到這條直線的垂線段的長度,叫點(diǎn)到直線的距離。連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。
圖片 圖片
三、同位角、內(nèi)錯角、同旁內(nèi)角
兩條直線被第三條直線所截形成8個角。
1.同位角:(在兩條直線的同一旁,第三條直線的同一側(cè))在兩條直線的上方,又在直線EF的同側(cè),具有這種位置關(guān)系的兩個角叫同位角。如:∠1和∠5。
2.內(nèi)錯角:(在兩條直線內(nèi)部,位于第三條直線兩側(cè))在兩條直線之間,又在直線EF的兩側(cè),具有這種位置關(guān)系的兩個角叫內(nèi)錯角。如:∠3和∠5。
3.同旁內(nèi)角:(在兩條直線內(nèi)部,位于第三條直線同側(cè))在兩條直線之間,又在直線EF的同側(cè),具有這種位置關(guān)系的兩個角叫同旁內(nèi)角。如:∠3和∠6。
四、平行線及其判定
平行線
1.平行:兩條直線不相交。互相平行的兩條直線,互為平行線。a∥b(在同一平面內(nèi),不相交的兩條直線叫做平行線。)
2.平行公理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。
3.平行公理推論:平行于同一直線的兩條直線互相平行。如果b//a,c//a,那么b//c
平行線的判定:
1. 兩條平行線被第三條直線所截,如果同位角相等,那么這兩條直線平行。(同位角相等,兩直線平行)
2. 兩條平行線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行。(內(nèi)錯角相等,兩直線平行)
3. 兩條平行線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么這兩條直線平行。(同旁內(nèi)角互補(bǔ),兩直線平行)
推論:在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行。
平行線的性質(zhì)
(一)平行線的性質(zhì)
1.兩條平行線被第三條直線所截,同位角相等。(兩直線平行,同位角相等)
2.兩條平行線被第三條直線所截,內(nèi)錯角相等。(兩直線平行,內(nèi)錯角相等)
3.兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。(兩直線平行,同旁內(nèi)角相等)
(二)命題、定理、證明
1.命題的概念:判斷一件事情的語句,叫做命題。
2.命題的組成:每個命題都是題設(shè)、結(jié)論兩部分組成。
題設(shè)是已知事項(xiàng);結(jié)論是由已知事項(xiàng)推出的事項(xiàng)。命題常寫成“如果 ,那么 ”的形式。具有這種形式的命題中,用“如果”開始的部分是題設(shè),用“那么”開始的部分是結(jié)論。
3.真命題:正確的命題,題設(shè)成立,結(jié)論一定成立。
4.假命題:錯誤的命題,題設(shè)成立,不能保證結(jié)論一定成立。
5.定理:經(jīng)過推理證實(shí)得到的真命題。(定理可以做為繼續(xù)推理的依據(jù))
6.證明:推理的過程叫做證明。
平移
1.平移:平移是指在平面內(nèi),將一個圖形沿著某個方向移動一定的距離,這樣的圖形運(yùn)動叫做平移變換 (簡稱平移),平移不改變物體的形狀和大小。
2.平移的性質(zhì)
①把一個圖形整體沿某一直線方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
②新圖形中的每一點(diǎn),都是由原圖形中的某一點(diǎn)移動后得到的,這兩個點(diǎn)是對應(yīng)點(diǎn)。連接各組對應(yīng)點(diǎn)的線段平行且相等。
數(shù)學(xué)七年級下冊知識2
平面直角坐標(biāo)系
一、平面直角坐標(biāo)系
有序數(shù)對
1.有序數(shù)對:用兩個數(shù)來表示一個確定的位置,其中兩個數(shù)各自表示不同的意義,我們把這種有順序的兩個數(shù)組成的數(shù)對,叫做有序數(shù)對,記作(a,b)
2.坐標(biāo):數(shù)軸(或平面)上的點(diǎn)可以用一個數(shù)(或數(shù)對)來表示,這個數(shù)(或數(shù)對)叫做這個點(diǎn)的坐標(biāo)。
平面直角坐標(biāo)系
1.平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)的數(shù)軸。這樣我們就說在平面上建立了平面直角坐標(biāo)系,簡稱直角坐標(biāo)系。
2.X軸:水平的數(shù)軸叫X軸或橫軸。向右方向?yàn)檎较颉?/p>
3.Y軸:豎直的數(shù)軸叫Y軸或縱軸。向上方向?yàn)檎较颉?/p>
4.原點(diǎn):兩個數(shù)軸的交點(diǎn)叫做平面直角坐標(biāo)系的原點(diǎn)。
對應(yīng)關(guān)系:平面直角坐標(biāo)系內(nèi)的點(diǎn)與有序?qū)崝?shù)對一一對應(yīng)。
坐標(biāo):對于平面內(nèi)任一點(diǎn)P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應(yīng)的數(shù)a,b分別叫點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)。
象限
1.象限:X軸和Y軸把坐標(biāo)平面分成四個部分,也叫四個象限。右上面的叫做第一象限,其他三個部分按逆時針方向依次叫做第二象限、第三象限和第四象限。象限以數(shù)軸為界,橫軸、縱軸上的點(diǎn)及原點(diǎn)不屬于任何象限。一般在x軸和y軸取相同的單位長度。
2.象限的特點(diǎn):
1、特殊位置的點(diǎn)的坐標(biāo)的特點(diǎn):
(1)x軸上的點(diǎn)的縱坐標(biāo)為零;y軸上的點(diǎn)的橫坐標(biāo)為零。
(2)第一、三象限角平分線上的點(diǎn)橫、縱坐標(biāo)相等;
第二、四象限角平分線上的點(diǎn)橫、縱坐標(biāo)互為相反數(shù)。
(3)在任意的兩點(diǎn)中,如果兩點(diǎn)的橫坐標(biāo)相同,則兩點(diǎn)的連線平行于縱軸;如果兩點(diǎn)的縱坐標(biāo)相同,則兩點(diǎn)的連線平行于橫軸。
2、點(diǎn)到軸及原點(diǎn)的距離:
點(diǎn)到x軸的距離為|y|;
點(diǎn)到y(tǒng)軸的距離為|x|;
點(diǎn)到原點(diǎn)的距離為x的平方加y的平方再開根號;
3、三大規(guī)律
(1)平移規(guī)律:
點(diǎn)的平移規(guī)律
左右平移→縱坐標(biāo)不變,橫坐標(biāo)左減右加;
上下平移→橫坐標(biāo)不變,縱坐標(biāo)上加下減。
圖形的平移規(guī)律 找特殊點(diǎn)
(2)對稱規(guī)律
關(guān)于x軸對稱→橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù);
關(guān)于y軸對稱→橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變;
關(guān)于原點(diǎn)對稱→橫縱坐標(biāo)都互為相反數(shù)。
(3)位置規(guī)律
各象限點(diǎn)的坐標(biāo)符號:(注意:坐標(biāo)軸上的點(diǎn)不屬于任何一個象限)
圖片
二、坐標(biāo) 方法 的簡單應(yīng)用
用坐標(biāo)表示地理位置的過程:
1.建立坐標(biāo)系,選擇一個合適的參照點(diǎn)為原點(diǎn),確定X軸和Y軸的正方向。
2.根據(jù)具體問題確定適當(dāng)?shù)谋壤撸谧鴺?biāo)軸上標(biāo)出單位長度。
3.在坐標(biāo)平面內(nèi)畫出這些點(diǎn),寫出各點(diǎn)的坐標(biāo)和各個地點(diǎn)的名稱。
用坐標(biāo)表示平移
在平面直角坐標(biāo)系內(nèi),如果把一個圖形各個點(diǎn)的橫坐標(biāo)都加(或減去)一個正數(shù)a,相應(yīng)的新圖形就把原圖形向右(左)平移a個單位長度;如果把它各個點(diǎn)的縱坐標(biāo)都加(或減去) 一個正數(shù)a,相應(yīng)的新圖形就把原圖形向上(下)平移a個單位長度。
用坐標(biāo)表示地理位置的過程:
1.建立坐標(biāo)系,選擇一個合適的參照點(diǎn)為原點(diǎn),確定X軸和Y軸的正方向。
2.根據(jù)具體問題確定適當(dāng)?shù)谋壤?,在坐?biāo)軸上標(biāo)出單位長度。
3.在坐標(biāo)平面內(nèi)畫出這些點(diǎn),寫出各點(diǎn)的坐標(biāo)和各個地點(diǎn)的名稱。
用坐標(biāo)表示平移
在平面直角坐標(biāo)系內(nèi),如果把一個圖形各個點(diǎn)的橫坐標(biāo)都加(或減去)一個正數(shù)a,相應(yīng)的新圖形就把原圖形向右(左)平移a個單位長度;如果把它各個點(diǎn)的縱坐標(biāo)都加(或減去) 一個正數(shù)a,相應(yīng)的新圖形就把原圖形向上(下)平移a個單位長度。
數(shù)學(xué)七年級下冊知識3
不等式與不等式組
一、不等式
不等式及其解集
1.不等式:用不等號(包括:>、圖片、圖片、<、≠)表示大小關(guān)系的式子。
2.不等式的解:使不等式成立的未知數(shù)的值,叫不等式的解。
3.不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
不等式的性質(zhì):
性質(zhì)1:如果a>b,b>c,那么a>c(不等式的傳遞性).
性質(zhì)2:不等式的兩邊同加(減)同一個數(shù)(或式子),不等號的方向不變。如果a>b,那么a+c>b+c(不等式的可加性).
性質(zhì)3: 不等式的兩邊同乘(除以)同一個正數(shù),不等號的方向不變。不等式的兩邊同乘(除以)同一個負(fù)數(shù),不等號的方向改變。
如果a>b,c>0,那么ac>bc如果a>b,c<0,ac<bc.(不等式的乘法法則)<span=""></bc.(不等式的乘法法則)<>
性質(zhì)4:如果a>b,c>d,那么a+c>b+d. (不等式的加法法則)
性質(zhì)5:如果a>b>0,c>d>0,那么ac>bd. (可乘性)
性質(zhì)6:如果a>b>0,n∈N,n>1,那么an>bn,且.當(dāng)0<n<1時也成立. (乘方法則) <span=""></n<1時也成立. (乘方法則) <>
二、一元一次不等式
1.一元一次不等式:含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式。
2、不等式的解法:
步驟:去分母,去括號,移項(xiàng),合并同類項(xiàng),系數(shù)化為一;
注意:去分母與系數(shù)化為一要特別小心,因?yàn)橐诓坏仁絻啥送瑫r乘或除以某一個數(shù),要考慮不等號的方向是否發(fā)生改變的問題。
三、一元一次不等式組
1.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
2.不等式組的解:幾個不等式的解集的公共部分,叫做由它們組成的不等式組的解集。解不等式組就是求它的解集。
3.解不等式組:先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式的解集。
解一元一次不等式組的一般方法:
以兩條不等式組成的不等式組為例,
①若兩個未知數(shù)的解集在數(shù)軸上表示同向左,就取在左邊的未知數(shù)的解集為不等式組的解集,此乃“同小取小”
②若兩個未知數(shù)的解集在數(shù)軸上表示同向右,就取在右邊的未知數(shù)的解集為不等式組的解集,此乃“同大取大”
③若兩個未知數(shù)的解集在數(shù)軸上相交,就取它們之間的值為不等式組的解集。若x表示不等式的解集,此時一般表示為a<x<b,或a≤x≤b。此乃“相交取中
④若兩個未知數(shù)的解集在數(shù)軸上向背,那么不等式組的解集就是空集,不等式組無解。此乃“向背取空”不等式組的解集的確定方法(a>b)
數(shù)學(xué)七年級下冊知識點(diǎn)相關(guān) 文章 :
★ 初一數(shù)學(xué)下冊知識點(diǎn)
★ 初中數(shù)學(xué)七年級下冊知識點(diǎn)提綱
★ 七年級下數(shù)學(xué)知識點(diǎn)總結(jié)
★ 初一數(shù)學(xué)下冊知識點(diǎn)歸納總結(jié)
★ 七年級下冊數(shù)學(xué)復(fù)習(xí)提綱
★ 初一數(shù)學(xué)下冊基本知識點(diǎn)總結(jié)
★ 七年級下冊數(shù)學(xué)的知識點(diǎn)
★ 初一數(shù)學(xué)下冊知識點(diǎn)匯總
★ 初一下期數(shù)學(xué)知識點(diǎn)總結(jié)
★ 七年級數(shù)學(xué)下冊知識點(diǎn)總結(jié)
七年級數(shù)學(xué)下冊知識點(diǎn)
七年級數(shù)學(xué)下冊知識點(diǎn)1
(1)審題。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關(guān)系是什么。
(2)設(shè)元(未知數(shù))。
①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說未知數(shù)越多,方程越易列,但越難解。
(3)用含未知數(shù)的代數(shù)式表示相關(guān)的量。
(4)尋找相等關(guān)系(有的由題目給出,有的由該問題所涉及的等量關(guān)系給出),列方程。一般地未知數(shù)個數(shù)與方程個數(shù)是相同的。
(5)解方程及檢驗(yàn)。
(6)答案。
綜上所述列方程(組)解應(yīng)用題實(shí)質(zhì)是先把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題(設(shè)元、列方程),在由數(shù)學(xué)問題的解決而導(dǎo)致實(shí)際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟后的作用。因此列方程是解應(yīng)用題的關(guān)鍵。
七年級數(shù)學(xué)下冊知識點(diǎn)2一.整式
※1.單項(xiàng)式
①由數(shù)與字母的積組成的代數(shù)式叫做單項(xiàng)式.單獨(dú)一個數(shù)或字母也是單項(xiàng)式.
②單項(xiàng)式的系數(shù)是這個單項(xiàng)式的數(shù)字因數(shù),作為單項(xiàng)式的系數(shù),必須連同數(shù)字前面的`性質(zhì)符號,如果一個單項(xiàng)式只是字母的積,并非沒有系數(shù).
③一個單項(xiàng)式中,所有字母的指數(shù)和叫做這個單項(xiàng)式的次數(shù).
※2.多項(xiàng)式
①幾個單項(xiàng)式的和叫做多項(xiàng)式.在多項(xiàng)式中,每個單項(xiàng)式叫做多項(xiàng)式的項(xiàng).其中,不含字母的項(xiàng)叫做常數(shù)項(xiàng).一個多項(xiàng)式中,次數(shù)最高項(xiàng)的次數(shù),叫做這個多項(xiàng)式的次數(shù).
②單項(xiàng)式和多項(xiàng)式都有次數(shù),含有字母的單項(xiàng)式有系數(shù),多項(xiàng)式?jīng)]有系數(shù).多項(xiàng)式的每一項(xiàng)都是單項(xiàng)式,一個多項(xiàng)式的項(xiàng)數(shù)就是這個多項(xiàng)式作為加數(shù)的單項(xiàng)式的個數(shù).多項(xiàng)式中每一項(xiàng)都有它們各自的次數(shù),但是它們的次數(shù)不可能都作是為這個多項(xiàng)式的次數(shù),一個多項(xiàng)式的次數(shù)只有一個,它是所含各項(xiàng)的次數(shù)中最高的那一項(xiàng)次數(shù).
※3.整式單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式.
二.整式的加減
1.整式的加減實(shí)質(zhì)上就是去括號后,合并同類項(xiàng),運(yùn)算結(jié)果是一個多項(xiàng)式或是單項(xiàng)式.
2.括號前面是“-”號,去括號時,括號內(nèi)各項(xiàng)要變號,一個數(shù)與多項(xiàng)式相乘時,這個數(shù)與括號內(nèi)各項(xiàng)都要相乘.
三.同底數(shù)冪的乘法
※同底數(shù)冪的乘法法則:(m,n都是正數(shù))是冪的運(yùn)算中最基本的法則,在應(yīng)用法則運(yùn)算時,要注意以下幾點(diǎn):
①法則使用的前提條件是:冪的底數(shù)相同而且是相乘時,底數(shù)a可以是一個具體的數(shù)字式字母,也可以是一個單項(xiàng)或多項(xiàng)式
②指數(shù)是1時,不要誤以為沒有指數(shù)
③不要將同底數(shù)冪的乘法與整式的加法相混淆,對乘法,只要底數(shù)相同指數(shù)就可以相加而對于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加
④當(dāng)三個或三個以上同底數(shù)冪相乘時,法則可推廣為 (其中m、n、p均為正數(shù))
⑤公式還可以逆用:(m、n均為正整數(shù))
四.冪的乘方與積的乘方
※1.冪的乘方法則:(m,n都是正數(shù))是冪的乘法法則為基礎(chǔ)推導(dǎo)出來的,但兩者不能混淆.
※2..
※3.底數(shù)有負(fù)號時,運(yùn)算時要注意,底數(shù)是a與(-a)時不是同底,但可以利用乘方法則化成同底,
如將(-a)3化成-a3
※4.底數(shù)有時形式不同,但可以化成相同.
※5.要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零).
※6.積的乘方法則:積的乘方,等于把積每一個因式分別乘方,再把所得的冪相乘,即 (n為正整數(shù)).
※7.冪的乘方與積乘方法則均可逆向運(yùn)用.
五.同底數(shù)冪的除法
※1.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即 (a≠0,m、n都是正數(shù),且m>n).
※2.在應(yīng)用時需要注意以下幾點(diǎn):
①法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0.
②任何不等于0的數(shù)的0次冪等于1,即 ,如 ,(-2.50=1),則00無意義.
③任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個數(shù)的p的次冪的倒數(shù),即 ( a≠0,p是正整數(shù)),而0-1,0-3都是無意義的當(dāng)a>0時,a-p的值一定是正的
上一篇:封神太子2哪吒技能搭配
下一篇:溝壑是什么意思是什么