排列組合公式
發(fā)布時(shí)間:2025-08-18 | 來(lái)源:互聯(lián)網(wǎng)轉(zhuǎn)載和整理
排列組合公式是什么?讓我們一起了解一下吧。
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n為下標(biāo),m為上標(biāo),以下同),組合C(n,m)=P(n,m)/P(m,m)=n!/m!(n-m)!例如A(4,2)=4!/2!=4*3=12;C(4,2)=4!/(2!*2!)=4*3/(2*1)=6。
排列組合是組合學(xué)的基本概念,排列就是指從給定個(gè)數(shù)的元素中取出指定個(gè)數(shù)的元素進(jìn)行排序,組合則是指從給定個(gè)數(shù)的元素中僅僅取出指定個(gè)數(shù)的元素,不考慮排序。組合的定義有兩種,定義的前提條件是m≦n。①.從n個(gè)不同元素中,任取m個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合。②.從n個(gè)不同元素中,取出m個(gè)元素的所有組合的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù)。
今天的分享就是這些,希望能幫助到大家。